Bimodality: a robust signature of the (liquide-gas?) phase transition of nuclear matter

The possible signals:
- caloric curve
- negative heat capacity
- charge correlations
- delta scaling
- Fisher scaling
- bimodality

This talk is devoted to:
- bimodality
- possible interpretation in terms of phase transition
- correlations with other signals: delta scaling and negative heat capacity
Advantages: bimodality is a direct and robust signal

It is still observed if the system is out of equilibrium

Lattice-gas approach
216 particles

Momentum distribution
beam

F. Gulminelli, P. Chomaz
Data and analysis

- Symmetrical collisions
 Au + Au and Xe + Sn from 60 to 100 MeV/u

- Set up : INDRA at GSI (Indra + Aladin groups)

Main features of the analysis

● possible separation of QP and QT contributions
● no event rejection (but completeness -80% - on QP side)
● bimodality analysis : on the QP side
● sorting variable : QT side transverse energy of LCP (Etrans)

→ two advantages :
 - no artificial sorting effect
 - Etrans/A ≈ temperature (if thermalization is achieved)
vpar-vper alpha - Au+Au 80MeV/u

8 zones in Etrans for LCP on QT side
The bimodality variables

\[\text{Varsym} = \frac{Z_{\text{max}} - Z_{\text{max-1}}}{Z_{\text{max}} + Z_{\text{max-1}}} \]

\[\text{Varsym} \approx 1 \quad \leftrightarrow \quad \text{A big residue + light particles} \]
\[\text{Varsym} \approx 0 \quad \leftrightarrow \quad \text{only small fragments} \]

Remarks: if fission occurs (it is easily recognized), the nucleus before fission is reconstructed
(\(Z_{\text{max}} = Z_{\text{FF1}} + Z_{\text{FF2}}\))

Varsym can be slightly negative if a smoothing procedure is added on Z (to avoid small integer
number effects)
varsym - Au + Au 80 MeV/u

Iguazu october 2005
Evolution with system mass and incident energy

Proportionnality with the system mass
cohrent with a temperature effect
cohrent with a phase transition behaviour

Proportionnality with the bombarding energy
one may understand this result
if E_{trans} is polluted by preequilibrium

Iguazu october 2005

Evolution with system mass and incident energy

Proportionnality with the system mass
cohrent with a temperature effect
cohrent with a phase transition behaviour

Proportionnality with the bombarding energy
one may understand this result
if E_{trans} is polluted by preequilibrium

Iguazu october 2005
The role of midrapidity emission

Mid-rapidity does not explain the qualitative change:
residue \rightarrow multifragment emission
Reducing of dynamical effects

The reduction of entrance channel memory (dynamical effects) leads to

- a stronger bimodality signal
- a smaller E_{trans} in the bimodality region

This result supports the hypothesis that the deposited energy is the relevant parameter.
Bimodality
the two «solutions» should correspond to different excitation energy

Conclusions:
coherence between data and predictions in the phase transition (lattice gas) picture

Iguazu october 2005
Bimodality
the two «solutions» should correspond to the same temperature

difficulty of finding an adapted thermometer:
- residue-like events: slope of the alpha particle spectra
- multifragment events: isotopic double ratio thermometer

Conclusions:
coherence between data and predictions in the phase transition (lattice gas) picture:

the two bimodality solutions correspond to different excitation energies but to similar temperatures.
Coherence between bimodality and negative heat capacity but one has to select compact events.
Crossing of the bimodality and delta scaling signals

\[\Phi(z_\Delta) = \Phi \left(\frac{Z_{\text{max}} - \langle Z_{\text{max}} \rangle}{\langle Z_{\text{max}} \rangle^\Delta} \right) \]

Iguazu october 2005
Crossing of the bimodality and delta scaling signals

\[\Phi(z_\Delta) = \Phi \left(\frac{Z_{\text{max}} - \langle Z_{\text{max}} \rangle}{\langle Z_{\text{max}} \rangle^{\Delta}} \right) \]

Coherence between bimodality and delta scaling:

transition from order to disorder

Iguazu October 2005
Conclusions

- Bimodality is a general feature for binary collisions
- Bimodality is better evidenced if dynamical effects are reduced
- The excitation energies associated with both « phases » are different; the temperatures are similar
- Coherence between bimodality and negative heat capacity for compact events (for Au+Au systems).
- Coherence between bimodality and delta scaling
- Dynamical effects (mid rapidity, neck) does not seem to explain the data

All these results are coherent with a phase transition behaviour observed for finite and not fully equilibrated systems

The question of the order of the transition is still open to discussion, but many features are coherent with a first order phase transition.

Iguazu october 2005