LIGHT ION INTERACTIONS
OF CONCERN FOR HADRONTHERAPY

F. Cerutti, F. Ballarini, G. Battistoni, P. Colleoni,
A. Ferrari, S.V. Förtsch, E. Gadioli, M.V. Garzelli,
A. Mairani, A. Ottolenghi, A. Pepe, L.S. Pinsky, P.R. Sala
RATIONALE

Study of heavy ion induced phenomena

beam characterization

- maximizing the Tumor Control Prob.
- minimizing the Normal Tissue Complication Prob.

shielding optimization

- crew health
- instrument performance

a comprehensive and reliable description of all naturally followed reaction paths is requested

MonteCarlo approach
Nuclear reactions *at few ten MeV/n* occur in the Spread-Out Bragg Peak region producing

- positron emitters *(in-beam PET therapy monitoring)*
- heavy residues with high RBE *(treatment planning optimization)*
- projectile’s fragments with longer residual range
• **The BME theory** describing the thermalization of the composite system formed in $A-A$ collisions at $E < 100 \text{ MeV/n}$

• **Its MonteCarlo implementation** (including projectile and target’s break-up) simulating the deexcitation process up to evaporation residue identification

 IMF d.d. spectra for $^{12}C + ^{27}Al$ and $^{27}Al + ^{12}C$ at 13 MeV/n

• **FLUKA**, an Interaction and Transport MonteCarlo code, for a physically sound description of shower propagation in any complex geometry

• **Applications**

 characterization of *ion beams used* in radiobiological experiments and cancer therapy
Calculation of preequilibrium for the composite nucleus

proton and neutron momentum spaces divided into bins

\[\{(px, py, pz) : pz \in [p_{zi}, p_{zi} + \Delta p_z), \quad \varepsilon = (2m)^{-1} (p_x^2 + p_y^2 + p_z^2) \in \left[\varepsilon_i, \varepsilon_i + \Delta \varepsilon \right) \} \]

\((z \text{ is the beam direction}) \)

of volume \(2\pi m \Delta \varepsilon \Delta p_z \)
The BME system

\[N_i = n_i \cdot g_i \]

nucleon number

number of states in bin \(i \)

occupation probability

\[
\frac{d(n_i \pi g_i \pi)}{dt} = \sum_{jlm} \left[\omega_{ij}^{\pi \pi} g_i^{\pi} n_i^{\pi} g_j^{\pi} n_j^{\pi} (1 - n_i^{\pi})(1 - n_j^{\pi}) \right. \\
- \omega_{ij}^{\pi \pi} g_i^{\pi} n_i^{\pi} g_j^{\pi} n_j^{\pi} (1 - n_i^{\pi})(1 - n_j^{\pi}) \left] + \sum_{jlm} \left[\omega_{ij}^{\nu \nu} g_i^{\nu} n_i^{\nu} g_j^{\nu} n_j^{\nu} (1 - n_i^{\nu})(1 - n_j^{\nu}) \right. \\
- \omega_{ij}^{\nu \nu} g_i^{\nu} n_i^{\nu} g_j^{\nu} n_j^{\nu} (1 - n_i^{\nu})(1 - n_j^{\nu}) \left] - n_i^{\pi} g_i^{\pi} \omega_{ij}^{\pi \pi'} g_{i'}^{\pi} \delta(\varepsilon_i^{\pi} - \varepsilon_{i'}^{\pi} - \varepsilon_{F}^{\pi} - B^{\pi}) - \frac{dD_i^{\pi}}{dt} \right. \]

\[\sum_{jlm} \]
Multiplicity spectra

of emitted nucleons

\[
\frac{d^2 M(\varepsilon', \theta)}{d\varepsilon' d\Omega} = \frac{1}{2\pi \sin \theta} \int_0^{t_{eq}} n(\varepsilon, \theta, t) \frac{\sigma_{inv} v}{V} \rho(\varepsilon', \theta) \, dt
\]

of a cluster \(c\)

\[
\frac{d^2 M_c(E'_c, \theta_c)}{dE'_c d\Omega} = \frac{R_c}{2\pi \sin \theta} \int_0^{t_{eq}} N_c(E_c, \theta_c, t) \frac{\sigma_{inv,c} v_c}{V} \rho_c(E'_c, \theta_c) \, dt
\]

\[
N_c(E_c, \theta_c, t) = \prod_i \left(n_i^{\pi}(\varepsilon, \theta, t) \right)^{P_i(E_c, \theta_c) Z_c} \cdot \prod_i \left(n_i^{\nu}(\varepsilon, \theta, t) \right)^{P_i(E_c, \theta_c) N_c}
\]

joint probability
The BME theory is of limited applicability because

- it provides *inclusive spectra* (as averaged over many different preequilibrium paths)

- it gives a *mean equilibrated nucleus* (not A_{CN}, Z_{CN}, E_{CN}^* distributions but their mean values)

- the compound nucleus turns out to **recoil always along z-axis**
 due to azimuthal symmetry of preequilibrium emissions
... to Monte Carlo code

\[
\int_{t}^{t+\Delta t} dt \int_{\theta}^{\theta+\Delta \theta} d\theta \int_{E}^{E+\Delta E} dE \frac{d^3 M_k(E, \theta, t)}{dE d\theta dt} \equiv p_k(E, \theta, t)
\]

\[(k \rightarrow \text{particle})\]

provided that \(\sum_k \int_{t}^{t+\Delta t} dt \int_{0}^{\pi} d\theta \int_{0}^{\infty} dE \frac{d^3 M_k}{dE d\theta dt} \lesssim 0.2\)

\((\Delta t \text{ depends on } t) \)
Double differential neutron yield

$^{20}\text{Ne} + ^{165}\text{Ho} \ (E_{\text{Lab}} = 292\text{MeV})$

$^{20}\text{Ne} + ^{165}\text{Ho} \ (E_{\text{Lab}} = 402\text{MeV})$

Complete fusion residue excitation functions

12C+103Rh Excitation Functions

Energy (MeV)

Full circles: exp. data
Empty circles: theory
Projectile (or target) 's break-up

LPWBA

\[T^{BF}(p_{sp.}) \propto |\hat{\phi}_{pa. sp.}(p_{sp.} - (m_{sp.}/m_P)p_P)|^2 \]

\(\hat{\phi}_{pa. sp.} \) is the wave function describing the relative motion of the two fragments inside the projectile

\(\vec{p}_P \) projectile momentum in the entrance channel

\(\vec{p}_{sp.} \) spectator momentum in the exit channel

\[S(E_P, E_{sp.}, \vartheta_{sp.}) \propto p_{sp.} p_{pa.} |\hat{\phi}_{pa. sp.}(\vec{p})|^2 \]

Assuming an initial state interaction

\[E_P' = E_P - E_L \]

with the probability for the energy loss \(E_L \)

given by

\[P(E_L) = (K/C) \exp(-K(E_L - E_{min})) \]

where \(C = 1 - \exp(-K(E_P - E_{min})) \)

\[\left[\frac{d^2\sigma}{dE_{sp.}d\Omega_{sp.}} \right](E_P, E_{sp.}, \vartheta_{sp.}) = \sigma^{BF} \int_{E_{min}}^{E_P} P(E_L)S(E_P', E_{sp.}, \vartheta_{sp.})dE_L \]
IMF emission in light systems $[^7Be]$

$^{12}C + ^{27}Al$ @ 13 MeV/n

$^{27}Al + ^{12}C$

nucleon coalescence ^{12}C break-up ^{27}Al break-up
IMF emission in light systems [B]

$^{12}C + ^{27}Al$

@ 13 MeV/n

$^{27}Al + ^{12}C$

nucleon coalescence

^{12}C break-up

^{27}Al break-up
IMF emission in light systems: the role of the evaporation

reaction mechanism

$^{23}\text{Na} + (^{4}\text{He} + ^{12}\text{C}) \rightarrow ^{23}\text{Na} + ^{16}\text{O}^*$

$^{22}\text{Ne} + (^{5}\text{Li} + ^{12}\text{C}) \rightarrow ^{22}\text{Ne} + ^{17}\text{F}^*$

$^{19}\text{F} + (^{8}\text{Be} + ^{12}\text{C}) \rightarrow ^{19}\text{F} + ^{20}\text{Ne}^*$

$^{16}\text{O} + (^{11}\text{B} + ^{12}\text{C}) \rightarrow ^{16}\text{O} + ^{23}\text{Na}^*$

$^{14}\text{N} + (^{13}\text{C} + ^{12}\text{C}) \rightarrow ^{14}\text{N} + ^{25}\text{Mg}^*$

$\rightarrow ^{39}\text{K}^*$

nucleon coalescence

^{27}Al break-up

evaporation

$^{27}\text{Al} + ^{12}\text{C} \rightarrow ^{27}\text{Al}$

σ [mb]

12

30

225
IMF emission in light systems \[F' \]

\[^{12}C + ^{27}Al \]

@ 13 MeV/n

\[^{27}Al + ^{12}C \]

nucleon coalescence

\[^{27}Al \] break-up

evaporation
IMF emission in light systems \([Na \)]

\[^{12}C + ^{27}Al \]

@ 13 MeV/n

\[^{27}Al + ^{12}C \]

\[^{27}Al \] break-up evaporation
IMF emission in light systems [Si]

$^{12}C + ^{27}Al$ @ 13 MeV/n $^{27}Al + ^{12}C$

evaporation
FLUKA: generalities

Authors: A. Fassò, A. Ferrari, J. Ranft, P.R. Sala

Interaction and Transport MonteCarlo code

Hadrons, leptons (incl. ν), photons, heavy ions, low energy neutrons from thermal or few keV to cosmic ray energies

• Each component is treated as far as possible with the same accuracy
• All components in a single run, without intermediate steps
• FLUKA can be run in fully analog mode
 Its microscopic interaction models reproduce internal correlations
• It can also be run in biased mode
• Ion interactions based on DPMJET-III* (New!!)
 and a considerably improved version of rQMD-2.4†

http://www.fluka.org

Different applications [1]

The FLUKA development, its accuracy and versatility originated to a great deal from the needs of the author experiments, and new applications arise from new code capabilities, with a continuous interplay which is always physics driven. Examples are given below.

- **Neutrino physics and Cosmic Ray studies: initiated within ICARUS**
 - Neutrino physics: ICARUS, CNGS, NOMAD, CHORUS
 - Cosmic Rays: first 3D ν flux simulation, Bartol, MACRO, Notre-Dame, AMS

- **Accelerators and shielding: the very first FLUKA application field**
 - Beam-machine interactions: CERN, NLC, LCLS
 - Radiation Protection: CERN, INFN, SLAC, Rossendorf
 - Waste Management and environment: LEP dismantling, SLAC

- **Background and radiation damage in experiments: pioneering work for ATLAS**
 - all LHC experiments, NLC
Different applications [II]

- **Dosimetry, radiobiology and therapy**
 - Dose to Commercial Flights: E.U., NASA
 - Dosimetry: INFN, ENEA, GSF, NASA
 - Radiotherapy: already applied to real situations (Optis at PSI, Clatterbridge)
 - Dose and radiation damage to Space flights: NASA, ASI

- **Calorimetry**
 - ATLAS test beams
 - ICARUS

- **ADS, spallation sources (FLUKA+EA-MC, C.Rubbia et al.)**
 - Energy Amplifier
 - Waste transmutation with hybrid systems
 - Pivotal experiments on ADS (TARC, FEAT)
 - nTOF
Double differential neutron yield

Ar ions

Fe ions

400 MeV/n on thick Al targets

Isotopic distributions of fragmentation products

\[^{238}\text{U} + ^{208}\text{Pb} \ (750 \text{ A MeV}) \]

676 MeV/n ^{12}C beam on a water phantom

- Carbon ion intensity as a function of depth

- Build-up of boron ions as a function of depth
FLUKA - 1 GeV/n Fe “perfect beam” on PMMA

Fragment spectra as a function of depth in PMMA (nuclei only, 3° cone)

Fragment spectra at 19 g/cm² in PMMA for all charged, nuclei only, and with or without a 3° cut
FLUKA - 1 GeV/n Fe “perfect beam” on PMMA

Track-average LET in PMMA

- all charged
- nuclei
- nuclei, 3°
- LET threshold
- LET thr., 3°

Dose average LET in PMMA

- all charged
- nuclei
- LET threshold
- nuclei, 3° cone

Track-average LET as a function of depth in PMMA

(“true”, nuclei only, restricted to a 3° cone, with and w/o a cut corresponding to e^- elimination)

Dose-average LET as a function of depth in PMMA

(“true”, with and w/o a cut roughly corresponding to e^- elimination, nuclei only with and w/o a 3° cone restriction)
Characterization of therapeutic beams

OPTIS facility at PSI for eye tumors

72 MeV protons

M. Biaggi et al., NIM B 159, 89 (1999)
CONCLUSIONS AND PERSPECTIVES

modeling

heavy ion interactions at low energies

- The **BME theory** can give a reliable account of **preequilibrium emissions**, including **IMF's**

- Its **MonteCarlo implementation** permits to calculate exclusive cross sections and a wide variety of observables (excitation functions, recoil range and angular distributions of individual residues and double differential spectra of light and intermediate mass particles)

- Its coupling with **FLUKA**, for a more proper description of A–A interactions **below 100 MeV/n**, is on the way

applications

- **hadrontherapy** optimization of **treatment planning**

- **space radiation protection** design of **spacecraft shielding** (for GCR) and special sheltering (for SPE)
Reaction cross section: a semiclassical expression

\[
\sigma_R = 2\pi \int_0^{\infty} \left(1 - T(b)\right) b \, db \quad T(b) = \exp \left(-\int_{-\infty}^{\infty} Q(b, z) \, dz\right)
\]

\(b\) impact parameter \quad \(z\) beam direction

following P.J. Karol, Phys. Rev. C 11, 1203 (1975)

\[
\sigma_R = \pi \left(a_T^2 + a_P^2\right) \left(E_1(\chi) + \ln \chi + \gamma\right) \left(1 - V_C/E_{ch}\right)
\]

\[
E_1(\chi) = \int_\chi^{\infty} \left(e^{-u/u}\right) \, du \quad \chi = \left(\pi^2 P(\xi) \bar{\sigma}(E_{nucl}) \rho_T(0) \rho_P(0) a_T^3 a_P^3\right) / \left(a_T^2 + a_P^2\right)
\]

\[
\bar{\sigma}(E_{nucl}) = \left[\left(\frac{Z_T}{A_T}\right) \left(\frac{Z_P}{A_P}\right) + \left(\frac{N_T}{A_T}\right) \left(\frac{N_P}{A_P}\right)\right] \sigma_{free}^{pp(nn)}(E_{nucl}) + \left[\left(\frac{Z_T}{A_T}\right) \left(\frac{N_P}{A_P}\right) + \left(\frac{Z_P}{A_P}\right) \left(\frac{N_T}{A_T}\right)\right] \sigma_{np}^{free}(E_{nucl})
\]

\[
a = a(R)
\]

\[
\rho(0) = (1/2) \rho_0 \exp\left((R/a)^2\right) \quad \rho_0 = 0.17 \text{ fm}^{-3}
\]

\[
\xi = \frac{E_F}{E_{nucl} + V}
\]

\[
\bar{E}_F(E_{nucl}) = B \exp(-KE_{nucl}) + C
\]

\[
V = \bar{E}_F + \left(S_T^T + S_n^T + S_P^P + S_n^P\right) / 4
\]
Reaction cross section: results
Fragment charge cross sections

\textbf{Fe 1.05 GeV/nucleon on Al}

\begin{center}
\begin{tikzpicture}
\begin{axis}[
width=\textwidth,
height=0.4\textwidth,
xlabel={Z},
ylabel={\(\sigma\) (mb)},
]
\addplot[only marks, mark options={scale=0.5}] table {data1.dat};
\addlegendentry{Zeitlin et al}
\addlegendentry{Cummings et al}
\addlegendentry{FLUKA}
\end{axis}
\end{tikzpicture}
\end{center}

\textbf{Fe 1.05 GeV/nucleon on Cu}

\begin{center}
\begin{tikzpicture}
\begin{axis}[
width=\textwidth,
height=0.4\textwidth,
xlabel={Z},
ylabel={\(\sigma\) (mb)},
]
\addplot[only marks, mark options={scale=0.5}] table {data2.dat};
\addlegendentry{Zeitlin et al}
\addlegendentry{Cummings et al}
\addlegendentry{Westfall et al}
\addlegendentry{FLUKA}
\end{axis}
\end{tikzpicture}
\end{center}

Analysis of projectile-like residues

$^{238}\text{U}^{+\text{208}}\text{Pb (750 A MeV)}$

Yield [nuclei/pr]

- **A**
 - 0 to 250
 - 10^{-4} to 1

- **Z**
 - 0 to 100
 - 10^{-1} to 1

Yield [nuclei/pr/GeV]

- E_{exc} [GeV]
 - 0 to 4
 - 10^{-2} to 1

- θ [°]
 - 175 to 180
 - 0 to 2