INTRODUCTION

The resistance switching (RS) effect is a reversible change in electric resistance induced by the application of voltage or current.\(^1\) This effect is considered to play a prominent role in the next generation of nonvolatile memories.\(^2\)–\(^4\) It has been extensively studied\(^5\)–\(^8\) not only because of its technological potential and downsizeable geometry but also for mere scientific interest, as RS has been associated with memristive devices.\(^6\)–\(^8\) A RS device is classified as bipolar if the polarity of the stimulus that induces a transition from a high to a low resistance state is opposite to the one that induces a low-to-high transition. If polarity of stimuli is not relevant, RS devices are said to be unipolar.\(^2\) According to several authors,\(^2\)–\(^4\) bipolar RS effect in metal-perovskite samples occurs at the interface and is due to an electric field driven redistribution of oxygen vacancies, near the metallic electrode, within the perovskite.

As pointed by Pickett et al.\(^7\), the lack of a time domain SPICE-like simulation model has been a major drawback for the massive adoption of bipolar RS devices in analog circuit design. In this paper, we discuss an electronic transport model that could serve as a basis for a time domain simulation model.

Several papers report the \(i-v\) response measurements to characterize RS phenomena in different devices.\(^2\)–\(^5\),\(^7\)–\(^11\) Typical \(i-v\) measurements display the hysteretic response of one magnitude (\(i\) or \(v\)) with respect to the other, which is injected to the RS device as a \textit{continuous} stimulus. The presence of zero-crossing hysteresis is considered to be the fingerprint of RS effect, as the two branches of the \(i-v\) curve correspond to different resistance values.

The protocol presented here is based on a \textit{pulsed} \(i-v\) measurement, as opposed to the \textit{continuous} method. The pulsed approach is standard for electronic device testing, and is also commonly used to avoid undesired heating and/or power consumption.\(^12\) For either a continuous or pulsed measurement, establishing the relation between nonvolatile resistance change and stimulus might be nontrivial, i.e., identifying the threshold amplitudes of nonvolatile changes might be difficult due to the smoothness of the \(i-v\) curve.

To gain insight into the nonvolatile resistance switch of the interface, the protocol performs an \textit{undisturbing} measurement between every pair of pulses by injecting a reading bias so low that it does not affect the resistive state of the interface (i.e., it does not alter the oxygen vacancy distribution). The set of readings between pulses, when the pulsing sequence is cyclic, results analogous to the Hysteresis Switching Loop (HSL) introduced by Nian \textit{et al.}\(^8\) Thus, the protocol is capable of registering alternately both the features of a pulsed \(i-v\) and the features of a HSL (i.e., the relation between nonvolatile resistance and pulsing stimulus) during the same experiment. We also show a simple electronic transport model that accounts for the obtained measured data and allows predicting the quasi-static \(i-v\) relation of the interface by means of a simple function of both the applied voltage and the succeeding resistance value.

EXPERIMENT DESCRIPTION

All the experiments discussed in this paper were performed at room temperature on a polycrystalline \(La_{0.325}Pr_{0.300}Ca_{0.375}MnO_3\) (LPCMO) ceramic pellet with millimeter-sized Ag hand-painted contacts. Four contacts (A-B-C-D) were placed along a straight line, separated from one another by approximately 0.5 mm [see contact configuration in the inset of Fig. 1(a)]. In previous works, we discussed the non-volatile response of these devices.\(^11\),\(^13\),\(^14\)

Current pulses were injected through contacts A and D using a Keithley 2602 SourceMeter. Recalling that bipolar RS takes place at metal-manganite interfaces exposed to

\(a\)Electronic mail: marlasca@cnea.gov.ar

\(b\)Electronic mail: levy@cnea.gov.ar
some electric stimulus, then contacts A and D were interfaces that experienced complementary RS.11 In this paper, we will focus on a single active interface (namely, the interface D), as results for the other contact are equivalent, except for reversed pulsing polarity.

Since bulk resistance (defined as V_{BC}/I_{AD}, I_{AD} small15) remained approximately constant at 35 mΩ, and resistance between terminals C and D (defined as $R_{CD} = V_{CD}/I_{AD}$) varied between 10 and 40 Ω, then voltage drop between contacts C and D was mainly due to contact D, i.e., the one that endured current passage. For this reason, we will refer to quantities like V_{CD}, R_{CD}, etc., simply as v, R, etc., all of them related to contact D.

The measuring protocol comprised a sequence of two alternated measurements: the pulsed i-v (or dynamic measurement) and the undisturbing measurement between pulses (remnant measurement). The dynamic measurement was performed by applying a series of short current pulses i_{pulse} through contacts A and D, while voltage drop v_{pulse} was measured between contacts C and D, using the sense terminals of the Keithley 2602 SourceMeter as a voltmeter. These pulses lasted about 1 ms each, and their amplitudes were sequenced to sweep in arbitrary steps from 0 to a maximum current value, then from the maximum to the minimum, and finally from the minimum back to 0, so as to complete a cycle. The pulses were square-shaped, except for short transients at the edges. As v_{pulse} was measured during the flat part of the pulses, the registered v_{pulse} values are considered to be quasi-static values.16

To avoid local heating and to allow the intermediate undisturbing measurement, time elapsed between pulses was kept longer than 2 s. The remnant measurement consisted in applying a small bias current I_{Bias} in between pulses so as to measure the remnant resistance of the interface D (defined as $R_{\text{Rem}} = V_{\text{Bias}}/I_{\text{Bias}}$) without affecting it in an irreversible way. The undisturbing value chosen for I_{Bias} was 300 μA.15

INTERFACE CHARACTERIZATION

The solid-circle line in Fig. 1(a) corresponds to the pulsed i_{pulse}-v_{pulse} curve obtained during a pulsing sequence cycle with maximum current amplitude of ±630 mA. Notice that it exhibits both hysteretic and nonlinear behavior. Being a smooth response, the onset of irreversibility is difficult to assign. The open-circle curve in Fig. 1(b) shows results obtained from the remnant measurement displayed as a function of v_{pulse}, i.e., the voltage drop measured while injecting i_{pulse} that preceded each remnant measurement. Notice that the remnant resistance cycle describes a loop that exhibits two well-defined plateaus, corresponding to a High remnant (HR) and a Low remnant (LR) resistance states. The steep remnant resistance transition between them is attributed to changes in the oxygen vacancy profile of the interface that happens when the electric stimulus is high enough to overcome the anchoring energy of the atoms to the matrix.

By defining the quasi-static resistance (i.e., the resistance measured while pulsing) as $R_{\text{QS}} = v_{\text{pulse}}/i_{\text{pulse}}$, the i_{pulse}-v_{pulse} measurement shown in Fig. 1(a) can also be displayed as the solid-circle curve in Fig. 1(b). Note that, as expected, R_{QS} tends to R_{Rem} as v_{pulse} tends to 0 (or, more precisely, as i_{pulse} tends to I_{Bias}) both for HR and LR states. Nonetheless, as the amplitude of v_{pulse} increases from ~0 V, R_{QS} and R_{Rem} become more and more dissimilar.

Let us consider the LR state in Fig. 1(b). As v_{pulse} departs from 0 V, no remnant resistance change occurs until v_{pulse} surpasses a threshold of approximately 1 V. On the other hand, R_{QS} decreases monotonically as the amplitude of v_{pulse} increases. Since no noticeable remnant resistance change occurs for $v_{\text{pulse}} < 1$ V, then no change of vacancy distribution is expected to explain the R_{QS} reduction observed as v_{pulse} increases. Thus, it is clear that a reversible, nonlinear electronic transport mechanism must account for the difference between R_{Rem} and R_{QS}.

With the aim of studying the small-current range where R_{Rem} and R_{QS} start diverging, we performed a series of experiments whose results are displayed in Fig. 2. This figure
shows eight measurements of different remnant resistance states at interface D, plotted against increasing I_{Bias}. Each remnant resistance state was obtained by applying a pulsing/measuring sequence similar to that previously described, except that the pulsing sequence was stopped when the desired (arbitrary) remnant resistance value was attained. Each remnant resistance state was then measured with increasing I_{Bias} values, none of them large enough to induce a RS transition. Notice that the remnant resistance value of each state remained almost constant within the 100 μA−1 mA I_{Bias} range. Nonetheless, as I_{Bias} was further increased, resistance measurement values started decreasing noticeably. It is worth mentioning that the value chosen for I_{Bias} when acquiring the results displayed in Fig. 1(b) ($I_{Bias} = 300$ μA) was well below the nonlinear threshold.

The response of the interface to increasing bias current may be qualitatively described as a resistance R_{Rem} in parallel to a non-linear device (NLD) that resembles a couple of antiparallel diodes. Let us discuss the response of such a NLD. First recall that a diode’s resistance is extremely large when forward voltage tends to 0. When reverse voltage is applied, decreases monotonically and tends to some extremely large value when forward voltage tends to 0. Thus, a couple of antiparallel diodes will behave as a NLD that exhibits a monotonic decreasing resistance R_{NLD} for increasing voltage amplitude (regardless of the polarity) or an extremely large resistance R_{NLD} when voltage tends to 0. Therefore, when a small current I_{Bias} is injected, a small voltage develops at the interface. If this voltage is sufficiently small, then the NLD will exhibit a resistance R_{NLD} much larger than R_{Rem}. Thus, the total parallel resistance, defined as $(R_{Rem}^{-1} + R_{NLD}^{-1})^{-1}$, must amount to approximately R_{Rem}. On the other hand, as I_{Bias} increases, voltage increases too, leading R_{NLD} to decrease accordingly. Hence, the total parallel resistance must decrease as I_{Bias} increases, which qualitatively explains the results displayed in Fig. 2. Recall these results were obtained for very small currents, i.e., for currents not high enough to induce resistance switching.

Consider again the results shown in Fig. 1(a). As previously remarked, this dynamic i_{Pulse}-v_{Pulse} curve displays both hysteretic behavior (i.e., resistive switching) and nonlinear electronic transport. We will now discuss a model that accounts quantitatively for these results, which is a generalization of the model we used to describe the results displayed in Fig. 2. We propose to model the direct-current response of the interface with the two-element electric circuit shown in the inset of Fig. 1(c). The element M represents a linear electronic transport memristive device we will associate with R_{Rem}. The element X, on the other hand, represents a NLD whose dependence on v_{Pulse} and vacancy distribution is yet to be determined. Therefore, i_{Pulse} is considered to be split into two: the current that flows through M, which we define as

$$i_{M} = v_{Pulse}/R_{Rem}$$

and the current that flows through X, defined as $i_{X} = i_{Pulse} - i_{M}$. Recall that R_{Rem} is measured after each pulse by injecting i_{Bias} and v_{Pulse} is measured while injecting i_{Pulse}, thus, calculating i_{M} and i_{X} requires data both from remnant and dynamic measurements. Fig. 1(c) shows the results obtained for i_{M} and Fig. 1(d) shows the results obtained for i_{X} (open circles). The i_{M} curve describes a highly hysteretic zero crossing loop along its cycle. Notice that the resistance value of M was point by point defined to be that of R_{Rem} [see Eq. (1)]; therefore, R_{Rem} is considered to be the resistive manifestation of the memristive device M. Two segments of the i_{M}-v_{Pulse} cycle exhibit linear i-v response, corresponding to M and X levels in Fig. 1(b). Remarkably, the obtained i_{M} curv e is qualitatively similar to that simulated by Strukov et al.5 for a linear i-v, bipolar, voltage-driven nonlinear ionic drift memristor. The i_{X} values were obtained by simply subtracting the i_{M} curve from the i_{Pulse} curve.

The obtained i_{X} curve presents two noticeable features. First, it seems to be almost non-hysteretic when compared to the curves obtained for i_{Pulse} and i_{M}, that is to say, X appears to be much less susceptible than M to the mechanism behind RS. Second, the i_{X}-v_{Pulse} relation of X does resemble the i-v relation of a couple of antiparallel diodes, in the sense that almost no current flows through it when v_{Pulse} is small [consider the plateau centered about $v_{Pulse} = 0$ V in Fig. 1(d)] but becomes more and more conductive as the amplitude of v_{Pulse} increases. This explains the convergence of R_{QS} and R_{Rem} as voltage tends to 0 [see Fig. 1(b)] and their divergence as the amplitude of v_{Pulse} increases.

We can gain some insight of the transport mechanism of the element X by fitting the i_{X}-v_{Pulse} data. It was found that the function that fits best the i_{X}-v_{Pulse} data was the power law $i_{X}(v_{Pulse}) = \alpha |v_{Pulse}|^\beta$, with $\alpha \approx 0.212$ ($\alpha \approx 0.184$) and $\beta \approx 2.21$ ($\beta \approx 2.29$) for v_{Pulse} positive (negative). Notice that the parameters α and β obtained for both polarities are very similar. This function is also displayed in Fig. 1(d) as a solid line. As the Space Charge Limited Current (SCLC) transport mechanism has a square law $i \propto v^2$ correlation,17 it appears to be the mechanism behind X. The small difference from 2 of the obtained β values may be due to other slightly nonlinear effects. According to Tsui et al.,17 who also studied electronic conduction in ceramic manganese samples, different mechanisms seem to be out at different voltage regimes. Namely, thermionic emission limited conduction (TELC)
seems to be prominent at the small voltage regime (where this mechanism presents linear i-v correlation) and SCLC seems to outstand at higher voltages, where a square law dependence emerges. This is remarkably consistent with the two-element parallel model: M (linear by definition) is prominent at lower voltages and X (which exhibits a nearly square law dependence) gains importance as \(v_{\text{Pulse}} \) increases. Hence, each element of the model is thought to stand for a different electronic transport mechanism: the linear element \(M \) stands for TELC conduction and \(X \) represents SCLC conduction.

USING THE ELECTRONIC TRANSPORT MODEL

In order to check the consistency of this 2-element model as a way to account for the quasi-static i-v response of Ag-LPCMO interfaces, we will compare experimental data with calculations done by applying the model. Before doing so, the mathematical implications of the model will be discussed.

Accounting for the quasi-static behavior of the interface means inferring either \(i_{\text{Pulse}} \) or \(v_{\text{Pulse}} \) from the other quantity and the values of the circuit elements. Since the proposed model is a 2-element parallel circuit, the simplest choice is calculating \(i_{\text{Pulse}} \) from \(v_{\text{Pulse}} \), as voltage is the common parameter to all elements of a parallel circuit. Mathematically, the model states that the current \(i_{\text{Pulse}} \) that flows through the interface is the sum of the currents that circulate through each of them. We will now restrict the analysis to the case in which \(X \) is non-hysteretic, a situation we will associate with small changes in the oxygen vacancy distribution near the interface. Recall that, in our experiments, the \(i_{\text{X}}v_{\text{Pulse}} \) relation obtained for the 630 mA cycle [Fig. 1(d)] exhibited nearly non-hysteretic behavior. It will be assumed that the \(i_{\text{X}}v_{\text{Pulse}} \) relation of \(X \) is the one we found, i.e., \(i_{\text{X}}(v_{\text{Pulse}}) = \alpha |v_{\text{Pulse}}|^\beta \), being \(\alpha \) and \(\beta \) polarity dependent. Stating also that the \(i_{\text{M}} \) dependence on \(v_{\text{Pulse}} \) is of Eq. (1), we can now rewrite Eq. (2) as,

\[
i_{\text{Pulse}}(v_{\text{Pulse}}, w) = i_X(v_{\text{Pulse}}, w) + i_M(v_{\text{Pulse}}, w),
\]

where \(w \) represents a vector that accounts for the vacancy distribution near the interface and \(i_X \) and \(i_M \) are the currents that flow through each of them. We will now restrict the analysis to the case in which \(X \) is non-hysteretic, a situation we will associate with small changes in the oxygen vacancy distribution near the interface. Recall that, in our experiments, the \(i_{\text{X}}v_{\text{Pulse}} \) relation obtained for the 630 mA cycle [Fig. 1(d)] exhibited nearly non-hysteretic behavior. It will be assumed that the \(i_{\text{X}}v_{\text{Pulse}} \) relation of \(X \) is the one we found, i.e., \(i_{\text{X}}(v_{\text{Pulse}}) = \alpha |v_{\text{Pulse}}|^\beta \), being \(\alpha \) and \(\beta \) polarity dependent. Stating also that the \(i_{\text{M}} \) dependence on \(v_{\text{Pulse}} \) is of Eq. (1), we can now rewrite Eq. (2) as,

\[
i_{\text{Pulse}}(v_{\text{Pulse}}, w) = \alpha |v_{\text{Pulse}}|^\beta + v_{\text{Pulse}}/R_{\text{Rem}}(w),
\]

Thus, if \(X \) is assumed to be non-hysteretic, then \(R_{\text{Rem}} \) (i.e., \(M \)) is the only quantity that depends explicitly on the vacancy distribution \(w \). Notice that Eq. (3) allows calculating the current \(i_{\text{Pulse}} \) of each pulse by replacing in it the parameters \(\alpha \) and \(\beta \), the voltage \(v_{\text{Pulse}} \) applied to the interface while pulsing, and the remnant resistance of the interface \(R_{\text{Rem}} \) after pulsing. As calculating the value of \(i_{\text{Pulse}} \) of a given pulse requires knowing the remnant resistance \(R_{\text{Rem}} \) of the interface after applying it, the value of \(R_{\text{Rem}} \) has to be known beforehand. The model described by Rozenberg et al. could be used for predicting \(R_{\text{Rem}} \) as it relates remnant resistance switching with vacancy distribution and its dynamics.

We will now discuss a series of additional RS experiments in which we compare registered \(i_{\text{Pulse}} \) values with their corresponding calculated values, obtained by using Eq. (3). Note that, as they were available, measured \(R_{\text{Rem}} \) values were used in the equation, so there was no need for predicting \(R_{\text{Rem}} \). Also recall that the experimental setup actually injects current pulses, but both \(i_{\text{Pulse}} \) and \(v_{\text{Pulse}} \) values are registered while pulsing. Thus, the model will be checked by “predicting” the injected \(i_{\text{Pulse}} \) values from the measured \(v_{\text{Pulse}} \) values.

Fig. 3(a) shows an experiment performed on the same contact D as before. It is the dynamic measurement obtained during a 600 mA maximum amplitude cycle loop (solid pentagons) and the corresponding remnant resistance measurement, displayed as the open pentagons’ line. The open circles are the calculated \(i_{\text{Pulse}} \) current values. These values were obtained by replacing the measured \(R_{\text{Rem}} \) values and using the same \(\alpha \) and \(\beta \) parameters obtained for the 630 mA loop data set. As shown in Fig. 3(a), registered and calculated values appear to be remarkably similar: calculation errors range from 1% to 15% with respect to the registered values, with an average error below 6%.

A “random write” pulsing experiment was also performed in the same contact. Fig. 3(b) shows an arbitrary \(i_{\text{Pulse}} \) pulsing sequence as a function of time (solid tilted squares) and the corresponding calculated \(i_{\text{Pulse}} \) values (open circles). Fig. 3(c) shows the corresponding remnant resistance sequence obtained by using the measured \(v_{\text{Pulse}} \) intensities (c) and the measured remnant resistance \(R_{\text{Rem}} \) (d).
features is necessary for estimating critical parameters like the response of a linear electronic transport memristive device. This fact allowed calculating \(i_{\text{Pulse}} \) from the values of \(v_{\text{Pulse}} \) and \(R_{\text{Rem}} \) within that range (i.e., where the vacancy distribution changes were said to be small) via Eq. (3).

Both the measuring protocol and the electric model could result useful for characterizing other memristive-interface memory cells. Measuring dynamic and remnant features is necessary for estimating critical parameters like power consumption during write time, \(\Delta R_{\text{Rem}} \) versus applied stimulus, etc. The proposed 2-component model could be used to extend the simulation model of Rozenberg et al. (which accounts only for remnant resistive switching) to predict dynamic behavior as well. Since this simulation model associates remnant resistance switching to voltage-driven vacancy redistribution, the quasi-static value of \(i_{\text{Pulse}} \) could be calculated if both the \(v_{\text{Pulse}} \) value used in each simulation step and the \(R_{\text{Rem}} \) value obtained after it are replaced in a properly adjusted version of Eq. (3). This approach could lead to a useful time domain SPICE-like model for these memristive interfaces.

ACKNOWLEDGMENTS

We would like to thank Dr. F. Palumbo for his valuable assistance. We acknowledge support from CONICET PIP 0047 “MeMO” and DuPont-CONICET 2010 “MeMOSat.” D.R. and P.L. are members of CONICET.

15. As explained below and shown in Fig. 2, \(I_{\text{Bias}} = I_{\text{AD}} = 300 \, \mu A \) ensures that \(R_{\text{Rem}} \) is measured within its linear response regime, without affecting irreversibly the state of the interface.
16. See supplementary material at http://dx.doi.org/10.1063/1.4800887 for details on pulse voltage profile measurements and a discussion about which remnant resistance value is considered, i.e., the one measured after pulsing or the one measured before.