Early in the study of high temperature superconducting compounds it was established that the superconducting transition temperature T_c was strongly dependent with the As-Fe-As angle of the FeAs$_4$ tetrahedron: T_c was maximal for regular values ($109^\circ 47'$) of the angle. Several theories were put forward to explain this behavior, all based on particular details of the band structure, that were supposed to be universal, i.e. applicable to all systems, as the empirical T_c vs angle relationship was based on recollections of data from different samples or measurements of different groups. To verify this relationship, we have started a systematic study of the behavior of different compounds under pressure. We are able to follow under pressure both the superconducting T_c by electrical resistivity measurements, and the evolution of the structure through synchrotron radiation measurements. We can then calculate the electronic band structure on the measured atomic positions at each pressure to follow the electronic properties. This method allows us to determine in each particular case the physical cause behind the relationship, that does not seem to be universal. For superconducting Sm-1111 it turns out to be a charge transfer issue, that is optimized under pressure. While for superconducting Sr$_2$VO$_3$FeAs it is associated to the disappearance of multiple nesting features when the tetrahedron becomes irregular under pressure and the degeneracy of the bands is broken. Our results call for more general symmetry related reasons to explain the relationship, that would then appear through different ways in different compounds.